Online vs. Oftline Learning,
Variance Reduction, and SVRG

CS6787 Lecture 5 — Fall 2017



Recall from Lecture 2

* Gradient descent
* Computationally slow to run

* Statistically converges at a linear rate
E |||l - *[*] = 0(+)

* Stochastic gradient descent (SGD)
* Computationally fast iterations, no dependence on dataset size
* Statistically converges at a slower rate — or to a noise ball

E |||z —2*[*] = 0(1/1)



Can We Do Better?

* Is there an algorithm that has the computational structure of SGD,
but still gets the fast linear rates of gradient descent?

* Intermediate question: can we find problems for which vanilla SGD
already converges at a linear rate, rather than converging to a noise ball?

* If we find such a problem, we can understand why it happens.



Matrix Completion

* Suppose you have some rank-1 matrix A = ral

* Carelessly, you lost most of the entries of A

* You only have access to a sparse, randomly-chosen subset of the entries

* Goal: recover the original matrix A from the sparse samples.

* Applications include recommender systems, principle component analysis, etc.



Matrix Completion as Optimization

* Simplest thing: minimize squared error between model and samples.
SN 1. ... T T 2
minimize,, g (e; xx" e; —e; Ae;)
(2,7)Esamples

e Is this convex?

* We can try to solve this with SGD: randomly choose (i, j) and run

Tii1 =2 — 20(ef xxte; — e?Aej)(eie]Tx +ejel x)



Aside: What is the cost of SGD here?

* Update rule is
Tii1 =2 — 20(ef xate; — e;‘;rAej)(eieJT:E +ejel x)
* Suppose we have K samples and = € R".

* What is the time complexity of computing an iteration of SGD?

* It’s really fast: O(1) — this makes SGD very attractive here



Demo



A Linear Rate tor SGD? Why?

* Variance ot the gradient estimator goes to zero over time.

* What is the variance at a particular point x?

Bl[vre) ] =5 X IeTarTe - e ez +eln)f

(,7)€Esamples
4
= = Z (ef wvx'e; — G?Aej)2((€?$)2 + (e 2)°)
(7,7)Esamples

* At an optimal point, xx¥ = A, the variance is zero!



The Role of Variance

* Hypothesis: if the variance becomes small when we get close to the
optimum, we converge at a linear rate.

* In fact, we can prove that we get a linear rate if for some C
r 2
Var (Vf(z)) < Oz — 2|
* Or more generally

B|[viw)| | <c|e[viw]| = cIvi@s



Can we make this happen for any objectiver

* One way to do it:

~

Vi(z) = Vf(z) - Vf(z")
* In expectation, this 1s the same since

E[Vg(z)] = Vf(z) =Vf(a") = Vf(z) =0
* And if the samples are Lipschitz continuous with parameter L,

IVa(@)|I° = IV f(z) = Vi(@)|° < L? |z —2*|



Does this mean we can always get a linear rater

* Yes! ...for any problem for which we already know the solution.

* Doesn’t seem very useful.

* What if we can approximate the solution? For T ~ x~

Vi(z) = Vf(z) — V()

* But now our gradients are biased — SGD converges to  not x*



Unbiased gradients with approximate solutions

* We can force the gradient to be unbiased by letting

Vi(x) = Vf(z) - VI(#) + B | V(@)

* Using a full gradient as an anchor to lower the variance

* But what 1s the computational cost of doing this?

* Is it feasible to compute the full gradient in every setting?
* Is it worth it to get a linear rate?



Online and Oftline Learning



Two Types of Settings for M. Problems

* Online learning
* The training examples arrive one-at-a-time as we are learning
e We don’t have access to all the training examples

e Not even necessarily a finite training set — new training examples may be
generated in real time 1n response to e.g. changes in the environment

* Offline learning
* We have access to all the training examples upfront
* The objective is a finite sum over the given training set



Online Learning

* Have some distribution of training examples, and goal is to
IMINIMIZE,, Liz~distribution [IOSS(U); QE)]

* But we don’t actually have an expression for the distribution

* All we can do is draw samples from it

L1, L2,L3,y...



Advantages of Online Learning

* Online learning generally doesn’t overfit
* Why? The training distribution 1s the same as the test distribution.

* Online learning easily handles new data from the environment

* Systems benefit: we don’t need to materialize the entire training set

* Great for scaling up to problems that don’t fit in memory



Disadvantages of Online Learning

* Can’t compute exact/full objectives and gradients

* Because we don’t even know distribution

e Difficult to evaluate convergence

* Generally don’t reuse training examples multiple times

* So don’t make efficient use of the cache for the training set

* Neural networks sometimes catastrophically forget older examples.



Limitations on Online Learning

* 1-D least squares regression: for some distribution g over R,

1
minimize; E,, ., §(x — u)?

* Optimal solution is just the mean, regardless of what  is

z" = BEyny (U]



Limitations on Online Learning (continued)

* Suppose there were an online learning algorithm that converged at a
linear rate for this 1-D least squares problem. Using t samples:

*\27 4
E[(%—ﬂj ) ] —O(’Y)
* But we know (from statistics) the lowest-variance estimator for the mean
of a distribution, given t samples, is just the sample mean

t
1 1
U = 7 g us = Var (u) = zVar ()

1=1

* Contradiction. No online algorithm can be this good!



Limitations on Online Learning (continued)

* Conclusion: there’s no online learning algorithm that converges at a
linear rate for general convex problems.

* This doesn’t mean that online SGD never converges at a linear rate

e We saw that the matrix completion example did
p p

* But it does suggest that if we want to make SGD converge at a linear
rate, we need more information than what we have in the online
setting.



Aside: Online Learning in Research

e Online learning 1s an active area of research.

* Just from a search of the titles, there were 18 papers mentioning online
learning in this year’s ICML and 28 papers in this year’s NIPS.

* And many more if we look at the abstracts.

* Particularly interesting to us because ot the computational benefits of
being able to run online.



Oftline Learning

* Offline or batch learning 1s the more traditional setting of minimizing a
finite sum of training losses

n
. 1
minimize,, — E [(w; x5, y;)
n
=1
* Offline learning is often just defined as “not online learning”

* We have access to everything:
* The loss function 1
* The training examples x
* The training labels y



Benetits of Oftline Learning

* Can compute exact/full objectives and gradients

* Consequence: it’s trivially possible to converge at a linear rate

* Just use gradient descent

* Can we leverage this to make an SGD-like algorithm fast?



Stochastic Variance-Reduced
Gradient (SVRG)



Recall: Unbiased low-variance samples

* From a few slides ago, we were looking at using samples of the form
Vi(x) = Vf(z) - VI(#) + B | V(@)

. SN X
* These samples have reduced variance when X is close to T

* We asked when we could do this, and now we have an answer:
* Only in the offline setting!

* Question: how do we use this in an algorithm?



How much did we reduce the variance?

« If the gradient samples are L-Lipschitz continuous
Var (Vj(z)) = Var (Vf(z) - Vi(#) + B |Vf(2)|)
— Var (v f(z) -V f(:?:))
<B|vi@ - vi@| |

< L?||x— 2|~




Is this enough for a linear rate for SGD?

* No, variance at the optimum is reduced, but still not zero!
Var (Vj(z*)) < L? ||z* — &|°.

e Idea: what if we used a sequence of X that approaches the optimum?

* Then the variance would go to zero over time!

* Intuition: if the variance goes to zero at a linear rate, then SGD should also
converge at a linear rate.



Is this enough? (continued)

* If we have a sequence of I that converges to the optimum at a linear
rate, then we can use it to reduce the variance of SGD so that it
converges to the optimum at a linear rate.

e This also doesn’t seem useful.

* Critical insight: use the iterates of SGD as I

* So, if SGD converges at a linear rate, then SGD will converge at a linear rate

* Seems circular — but we can make it rigorous



How often to use full gradient samples?

* Can we use every iteration of SGD as an anchor point &= ?

* We could...but this would just be gradient descent.
Vi) = V(@) - Vf(2) + B |Vf(2)]
=V f(x).

* Instead, use a full gradient sample every K iterations of SGD.
* Called an epoch.



Stochastic Variance-Reduced Gradient (SVRG)

* Initialize x 7 arbitrarily

* Outer loop: fork=1to K
Tk ¢ Th—1,T
gk < Vf(Zg) =E {Vf(i’k)}
Tko < Tk

* Inner loop: fort=1to T

* Sample f} , at random from training set losses

Tt & Tht—1 — O (vfk,t(xk,t—l) — V fre(E1) + ?]k)



Computational Cost of SVRG

* Each inner loop runs for T iterations
* Has a computational cost of O(T)

* It we have n examples, the outer loop gradient computation has a
computational cost of O(n)

* Over K total outer loop iterations, total time 1s O(Kn + KT)



Memory Burden ot SVRG

* In addition to the copy of the model that needs to be stored for vanilla
SGD, we also need to store

* An additional copy of the model vector for the anchor point T
* An additional vector to store its exact/full gradient

e If the model is of size d, we will need to store a total of 3d numbers

* Plus the training set, which is usually much larger

* Takeaway: no significant memory cost to run SVRG



Linear Rates for SVRG



Very Simple Proof that SVRG Converges
* Strategy: run the inner loop of SVRG long enough that for some y <1

E [|oxr — 2|0 <7 leko — 2|

* Show that a fixed T suftfices for every epoch k

* This is enough to show convergence at a linear rate. Why?

* You'll see a tighter version of this proot in this week’s paper.



Analysis ot an Inner Iterate of SVRG

* Starting with the iterate:
Tkt = Tht—1 — O (ka,t(ﬂfk,t—l) — Vfei(Zr) + §k)
* Let’s simplify it a little by abusing notation to drop the k subscripts

vy =2y —a (Vilzio) - V(@) + V()



Analysis (continued)

* Expected distance to the optimum:

a:'t_l] —F [ xH]

= ||z — 2" |2 —2a(zi—1 — 2*)'E [Vft(zvt_l) — Vft(:%) + Vf(z)

$t—1]

= ||wem1 — 2*))* = 2a(zi—1 — )TV f(2i-1) + 2 ||V f(z-1)]*
+a?Var (Ve 1) = V(@) + VF(@)|z)

* To proceed, need to bound the second order/variance term

E [th — | T 1 — 2" — 0 (vf;(a:t_l) _ V(@) + Vf(:?:)) H2

iUt—1}

Viiwer) - V@) + V56|

+042E[




Analysis (continued)

* Important property: for constant ¢, Var (X + ¢) = Var (X)

* We can use this to simplify the second order term:

Var (Vft(xt_l) ~VFi(2) + V() xt_l)

— Var (Vft(xt—l) - vft(i) th_l)

xt—l}

< L2 |wyy — 2| < 2L [|lzy — 2*|)? + 202 || & — ¥

| 2

< B||[Vii(err) - Vita)




Analysis (continued)

* Substituting this back, we get

E |||z - 2"

ft—l} < [lee—1 — SU*HQ —20(xp—1 — ") Vf(wim1) + 0 ”Vf(flft—l)H2
+0? (212 oy - |* + 227 || — 27|*)

* Now we can reduce the first part using strong convexity/Lipschitz

E |||z — 2”7

ver] < s = 2P = 20p ai-s = 2P + 0212 ey — 27

+a? (2L2 |lpoy — ¥ + 202 || — 2*)°)



Analysis (continued)

* We can now take the tfull expectation, given the anchor point

E |||z — 2|

i} < (1 —2au+ 3a2L2)E {H'Tt—l — $*||2

d

pr < (1 =20+ 30°L?)py—1 + 20° L% pg

x} 4202102 ||z — 2*|?

* Next, for simplicity, let py = E th - 37*H2

* Suppose we want to contract by a factor of e. As long as e p, ;> py-

pr < (1 —2ap+3a”L?)pi_1 4+ 20°Lep;



Analysis (continued)

* Now we have
pr < (1 —2au+ 3042L2),0t L+ 20 Lep;_q
< (1 —2ap + 5a0*L?€e)pi_1

* Setting the step size such that au = 5a”L%e

2 2 \ ¢ 2
K M K
< | 1-— 1= 0 < |1 — < —
Pt > < 5L26> Pt—1 = Pt > ( 5L26> PO _exp( 5120




Analysis (continued)

* Now, this was all contingent upon e p, ;> P,-

* How many iterations do we need to get there?

* Need t such that
2
v 1
ex — t] < —
p( HL?%e > e

5L°%¢
= 2
L4

* It suftices to pick any




Analysis ot Inner Loop Is Donel

5L°%¢
112

* We’ve shown that if we run for ¢ > iterations,

1
E |||z — o [*|2] < = [}& - 27|
€

* In particular, this means that across outer loop iterations,

E [lixs1 —2°|?] < B [|# - a*)]



Outer Loop Analysis

* Applying this recursively,

E |[|lax - 2°|*| < e ||z — 27|

* So, to get down to error ¢ we need k iterations, where




Bringing it Together

* Total number of stochastic gradient iterations needed 1s

5L2%e |20 — 2*||° 1
tk > ——log =0 | log | —

1 € €

 This is a linear rate!



Demo



Issues with Variance Reduction

* Computational cost
* Overfitting
* Interaction with other techniques

* Choosing parameters

* Metaparameter optimization



Other Methods for Variance
Reduction



SAG

* Stochastic average gradient

* At each step, randomly update a single example’s gradient estimate using
the current iterate, like SGD

* But, use the sum of all gradient estimates to perform an update



Systems Comparison: SAG vs SVRG

* SAG requires us to store a gradient sample for each training example

* What is the memory cost of doing this, if we have n training examples
and our model has dimension d?

* Answer: it’s O(nd)

* Compare to SVRG which required O(3d)



Many other variance reduction methods

* SAG
* SAGA
* SVRG

e SDCA — stochastic dual coordinate ascent
* Htc.



Questions?

* Upcoming things
. Paper Presentation #4 on Wednesday — read paper before class
* Paper Review #3 due Today.



