
Online vs. Offline Learning, 
Variance Reduction, and SVRG

CS6787 Lecture 5 — Fall 2017



Recall from Lecture 2

! Gradient descent
! Computationally slow to run
! Statistically converges at a linear rate

! Stochastic gradient descent (SGD)
! Computationally fast iterations, no dependence on dataset size
! Statistically converges at a slower rate— or to a noise ball

E
!
! xt " x⇤! 2

"
= O(�t)

E
h
kxt � x⇤k2

i
= O(1/t)



Can We Do Better?

! Is there an algorithm that has the computational structure of  SGD, 
but still gets the fast linear rates of  gradient descent?

! Intermediate question: can we find problems for which vanilla SGD 
already converges at a linear rate, rather than converging to a noise ball?

! If  we find such a problem, we can understand why it happens.



Matrix Completion

! Suppose you have some rank-1 matrix

! Carelessly, you lost most of  the entries of  A
! You only have access to a sparse, randomly-chosen subset of  the entries

! Goal: recover the original matrix A from the sparse samples.
! Applications include recommender systems, principle component analysis, etc.

A = xx T



Matrix Completion as Optimization

! Simplest thing: minimize squared error between model and samples.

! Is this convex?

! We can try to solve this with SGD: randomly choose (i, j) and run

minimizex

!

( i,j ) ! samples

(eT
i xx T ej ! eT

i Aej )2

xt +1 = xt ! 2! (eT
i xx T ej ! eT

i Aej )(ei eT
j x + ej eT

i x)



Aside: What is the cost of  SGD here?

! Update rule is

! Suppose we have K samples and              .

! What is the time complexity of  computing an iteration of  SGD?

! It’s really fast: O(1) — this makes SGD very attractive here

xt +1 = xt ! 2! (eT
i xx T ej ! eT

i Aej )(ei eT
j x + ej eT

i x)

x ! Rn



Demo



A Linear Rate for SGD? Why?

! Variance of  the gradient estimator goes to zero over time.

! What is the variance at a particular point x?

! At an optimal point, xxT = A, the variance is zero! 

E
! "
"
" ÷! f (x)

"
"
"

2
#

=
4
K

$

(i,j ) ! samples

"
" (eT

i xx T ej " eT
i Aej )(ei eT

j x + ej eT
i x)

"
" 2

=
4
K

$

(i,j ) ! samples

(eT
i xx T ej " eT

i Aej )2((eT
j x)2 + ( eT

i x)2)



The Role of  Variance

! Hypothesis: if  the variance becomes small when we get close to the 
optimum, we converge at a linear rate.

! In fact, we can prove that we get a linear rate if  for some C

! Or more generally

E
! "
"
" ! ÷f (x)

"
"
"

2
#

" C
"
"
" E

$
! ÷f (x)

%"
"
"

2
= C #! f (x)#2

Var
!

! ÷f (x)
"

" C #x $ x! #2



Can we make this happen for any objective?

! One way to do it:

! In expectation, this is the same since

! And if  the samples are Lipschitz continuous with parameter L,

! ÷g(x) = ! ÷f (x) " ! ÷f (x! )

E [! ÷g(x)] = ! f (x) " ! f (x! ) = ! f (x) " 0

krg̃(x)k2 = krf(x)�rf(x⇤)k2  L

2 kx� x

⇤k2



Does this mean we can always get a linear rate?

! Yes! ...for any problem for which we already know the solution.

! DoesnÕt seem very useful.

! What if  we can approximate the solution? For 

! But now our gradients are biased — SGD converges to 

! ÷g(x) = ! ÷f (x) " ! ÷f (öx)

öx ! x!

x̂ not x

⇤



Unbiased gradients with approximate solutions

! We can force the gradient to be unbiased by letting

! Using a full gradient as an anchor to lower the variance

! But what is the computational cost of  doing this?
! Is it feasible to compute the full gradient in every setting?
! Is it worth it to get a linear rate?

rg̃(x) = rf̃(x)�rf̃(x̂) +E
h
rf̃(x̂)

i



Online and Offline Learning



Two Types of  Settings for ML Problems

! Online learning
! The training examples arrive one-at-a-time as we are learning
! We don’t have access to all the training examples
! Not even necessarily a finite training set — new training examples may be 

generated in real time in response to e.g. changes in the environment

! Offline learning
! We have access to all the training examples upfront
! The objective is a finite sum over the given training set



Online Learning

! Have some distribution of  training examples, and goal is to

! But we donÕt actually have an expression for the distribution

! All we can do is draw samples from it

minimize

w

E
x̃⇠distribution

[loss(w; x̃)]

x̃1, x̃2, x̃3, . . .



Advantages of  Online Learning

! Online learning generally doesnÕt overfit
! Why? The training distribution is the same as the test distribution.

! Online learning easily handles new data from the environment

! Systems benefit: we don’t need to materialize the entire training set
! Great for scaling up to problems that don’t fit in memory



Disadvantages of  Online Learning

! CanÕt compute exact/full objectives and gradients
! Because we don’t even know distribution

! Difficult to evaluate convergence

! Generally donÕt reuse training examples multiple times
! So don’t make efficient use of  the cache for the training set

! Neural networks sometimes catastrophically forget older examples.



Limitations on Online Learning

! 1-D least squares regression: for some distribution µ over R,

! Optimal solution is just the mean, regardless of  what µ is

minimizexEu⇠µ


1
2

(x� u)2
�

x

⇤ = Eu⇠µ [u]



Limitations on Online Learning (continued)

! Suppose there were an online learning algorithm that converged at a 
linear rate for this 1-D least squares problem. Using t samples:

! But we know (from statistics) the lowest-variance estimator for the mean 
of  a distribution, given t samples, is just the sample mean

! Contradiction. No online algorithm can be this good!

E
⇥
(xt � x⇤)2

⇤
= O(�t)

ū =
1

t

tX

i=1

ut ) Var (ū) =
1

t
Var (ut)



Limitations on Online Learning (continued)

! Conclusion: there’s no online learning algorithm that converges at a 
linear rate for general convex problems.

! This doesn’t mean that online SGD never converges at a linear rate
! We saw that the matrix completion example did

! But it does suggest that if  we want to make SGD converge at a linear 
rate, we need more information than what we have in the online 
setting.



Aside: Online Learning in Research

! Online learning is an active area of  research.

! Just from a search of  the titles, there were 18 papers mentioning online 
learning in this year’s ICML and 28 papers in this year’s NIPS.

! And many more if  we look at the abstracts.

! Particularly interesting to us because of  the computational benefits of  
being able to run online.



Offline Learning

! Offline or batch learning is the more traditional setting of  minimizing a 
finite sum of  training losses

! Offline learning is often just defined as “not online learning”

! We have access to everything:
! The loss function l
! The training examples x
! The training labels y

minimizew
1
n

n!

i =1

l (w; xi , yi )



Benefits of  Offline Learning

! Can compute exact/full objectives and gradients

! Consequence: it’s trivially possible to converge at a linear rate
! Just use gradient descent

! Can we leverage this to make an SGD-like algorithm fast?



Stochastic Variance-Reduced 
Gradient (SVRG)



Recall: Unbiased low-variance samples

! From a few slides ago, we were looking at using samples of  the form

! These samples have reduced variance when      is close to  

! We asked when we could do this, and now we have an answer:
! Only in the offline setting!

! Question: how do we use this in an algorithm?

rg̃(x) = rf̃(x)�rf̃(x̂) +E
h
rf̃(x̂)

i

öx x!



How much did we reduce the variance?

! If  the gradient samples are L-Lipschitz continuous

Var (rg̃(x)) = Var
⇣
rf̃(x)�rf̃(x̂) +E

h
rf̃(x̂)

i⌘

= Var
⇣
rf̃(x)�rf̃(x̂)

⌘

 E

���rf̃(x)�rf̃(x̂)
���
2
�

 L

2 kx� x̂k2 .



Is this enough for a linear rate for SGD?

! No , variance at the optimum is reduced, but still not zero!

! Idea: what if  we used a sequence of       that approaches the optimum?

! Then the variance would go to zero over time! 
! Intuition: if  the variance goes to zero at a linear rate, then SGD should also 

converge at a linear rate.

Var (! ÷g(x! )) " L 2 #x! $ öx#2 .

öx



Is this enough? (continued)

! If  we have a sequence of       that converges to the optimum at a linear 
rate, then we can use it to reduce the variance of  SGD so that it 
converges to the optimum at a linear rate.

! This also doesnÕt seem useful.

! Critical insight: use the iterates of  SGDas
! So, if  SGD converges at a linear rate, then SGD will converge at a linear rate
! Seems circular — but we can make it rigorous 

öx

öx



How often to use full gradient samples?

! Can we use every iteration of  SGD as an anchor point      ?

! We could…but this would just be gradient descent.

! Instead, use a full gradient sample every K iterations of  SGD.
! Called an epoch.

öx

rg̃(x) = rf̃(x)�rf̃(x) +E
h
rf̃(x)

i

= rf(x).



Stochastic Variance-Reduced Gradient (SVRG)

! Initialize x0,T arbitrarily
! Outer loop: for k = 1 to K

! Inner loop: for t = 1 to T
! Sample fk,t at random from training set losses

x̂k  xk�1,T

ĝk  rf(x̂k) = E
h
rf̃(x̂k)

i

xk, 0 ! öxk

xk,t ! xk,t ! 1 " !
!

# ÷f k,t (xk,t ! 1) " # ÷f k,t (öxk ) + ögk

"



Computational Cost of  SVRG

! Each inner loop runs for T iterations
! Has a computational cost of  O(T)

! If  we have n examples, the outer loop gradient computation has a 
computational cost of  O(n)

! Over K total outer loop iterations, total time is O(Kn + KT)



Memory Burden of  SVRG

! In addition to the copy of  the model that needs to be stored for vanilla 
SGD, we also need to store

! An additional copy of  the model vector for the anchor point
! An additional vector to store its exact/full gradient

! If  the model is of  size d, we will need to store a total of  3d numbers
! Plus the training set, which is usually much larger

! Takeaway: no significant memory cost to run SVRG

öx



Linear Rates for SVRG



Very Simple Proof  that SVRG Converges

! Strategy: run the inner loop of  SVRG long enough that for some 𝛾 < 1

! Show that a fixed T suffices for every epoch k
! This is enough to show convergence at a linear rate. Why?

! You’ll see a tighter version of  this proof  in this weekÕs paper.

E
h
kxk,T � x

! k2
���xk, 0

i
 ! kxk, 0 � x

! k2
.



Analysis of  an Inner Iterate of  SVRG

! Starting with the iterate:

! Let’s simplify it a little by abusing notation to drop the k subscripts

xk,t = xk,t! 1 ! !
!

" ÷
fk,t(xk,t! 1) ! " ÷

fk,t(öxk) + ögk
"

xt = xt ! 1 ! !
!

" ÷f t (xt ! 1) ! " ÷f t (öx) + " f (öx)
"



Analysis (continued)

! Expected distance to the optimum:

! To proceed, need to bound the second order/variance term

E [xt ! x! |xt " 1] = E
! "
"
" xt " 1 ! x! ! !

#
" ÷f t (xt " 1) ! " ÷f t (öx) + " f (öx)

$"
"
"

2
%
%
%
%xt " 1

&

= #xt " 1 ! x! #2 ! 2! (xt " 1 ! x! )T E
'
" ÷f t (xt " 1) ! " ÷f t (öx) + " f (öx)

%
%
%xt " 1

(

+ ! 2E
! "
"
" " ÷f t (xt " 1) ! " ÷f t (öx) + " f (öx)

"
"
"

2
%
%
%
%xt " 1

&

= #xt " 1 ! x! #2 ! 2! (xt " 1 ! x! )T " f (xt " 1) + ! 2 #" f (xt " 1)#2

+ ! 2Var
#

" ÷f t (xt " 1) ! " ÷f t (öx) + " f (öx)
%
%
%xt " 1

$

E
h
kxt � x

⇤k2
���xt�1

i



Analysis (continued)

! Important property: for constant c,

! We can use this to simplify the second order term: 

Var (X + c) = Var (X )

Var
!

! ÷f t (xt ! 1) " ! ÷f t (öx) + ! f (öx)
"
"
"xt ! 1

#

= Var
!

! ÷f t (xt ! 1) " ! ÷f t (öx)
"
"
"xt ! 1

#

# E
$%
%
%! ÷f t (xt ! 1) " ! ÷f t (öx)

%
%
%

2
"
"
"
"xt ! 1

&

# L 2 $xt ! 1 " öx$2 # 2L 2 $xt ! 1 " x" $2 + 2L 2 $öx " x" $2



Analysis (continued)

! Substituting this back, we get

! Now we can reduce the first part using strong convexity/Lipschitz

E [xt ! x! |xt " 1] " # xt " 1 ! x! #2 ! 2! (xt " 1 ! x! )T $ f (xt " 1) + ! 2 #$ f (xt " 1)#2

+ ! 2
!

2L 2 #xt " 1 ! x! #2 + 2L 2 #öx ! x! #2
"

E
h
kxt � x

⇤k2
���xt�1

i

E
h
kxt � x

⇤k2
���xt�1

i
 kxt�1 � x

⇤k2 � 2↵µ kxt�1 � x

⇤k2 + ↵

2
L

2 kxt�1 � x

⇤k2

+ ↵

2
⇣
2L2 kxt�1 � x

⇤k2 + 2L2 kx̂� x

⇤k2
⌘

= (1� 2↵µ+ 3↵2
L

2) kxt�1 � x

⇤k2 + 2↵2
L

2 kx̂� x

⇤k2



Analysis (continued)

! We can now take the full expectation, given the anchor point

! Next, for simplicity, let

! Suppose we want to contract by a factor of  e. As long as e pt-1 > p0:

! t = E
!
! xt " x⇤! 2

"
"
"öx

#

⇢t  (1 � 2↵µ + 3↵2L 2)⇢t! 1 + 2↵2L 2⇢0

E
!
! xt " x! ! 2

"
"
"öx

#
# (1 " 2! µ + 3 ! 2L 2)E

!
! xt " 1 " x! ! 2

"
"
"öx

#
+ 2 ! 2L 2 ! öx " x! ! 2

! t ! (1 " 2" µ + 3 " 2L 2)! t ! 1 + 2 " 2L 2e! t ! 1



Analysis (continued)

! Now we have

! Setting the step size such that

! t ! (1 " 2" µ + 3 " 2L 2)! t ! 1 + 2 " 2L 2e! t ! 1

! (1 " 2" µ + 5 " 2L 2e)! t ! 1

! µ = 5 ! 2L 2e

! t !
!

1 "
µ2

5L 2e

"
! t ! 1 # ! t !

!
1 "

µ2

5L 2e

" t

! 0 ! exp
!

"
µ2

5L 2e
t
" t

! 0



Analysis (continued)

! Now, this was all contingent upon e pt-1 > p0.

! How many iterations do we need to get there?
! Need t such that

! It suffices to pick any

exp
!

!
µ2

5L 2e
t
"

"
1
e

t !
5L 2e
µ2



Analysis of  Inner Loop Is Done!

! We’ve shown that if  we run for                    iterations,

! In particular, this means that across outer loop iterations,

t !
5L 2e
µ2

E
!
! xt " x! ! 2

"
"
"öx

#
#

1
e

! öx " x! ! 2

E
!
! öxk+1 " x! ! 2

"
#

1
e

E
!
! öxk " x! ! 2

"



Outer Loop Analysis

! Applying this recursively,

! So, to get down to error ε we need k iterations, where

E
!
! öxk " x! ! 2

"
# e" k ! öx0 " x! ! 2

k ! log

!
" öx0 # x! " 2

!

"



Bringing it Together

! Total number of  stochastic gradient iterations needed is

! This is a linear rate!

tk !
5L 2e
µ2 log

!
" öx0 # x! " 2

!

"

= O
#

log
#

1
!

$$



Demo



Issues with Variance Reduction

! Computational cost

! Overfitting

! Interaction with other techniques

! Choosing parameters
! Metaparameteroptimization



Other Methods for Variance 
Reduction



SAG

! Stochastic average gradient

! At each step, randomly update a single example’s gradient estimate using 
the current iterate, like SGD

! But, use the sum of  all gradient estimates to perform an update



Systems Comparison: SAG vs SVRG

! SAG requires us to store a gradient sample for each training example

! What is the memory cost of  doing this, if  we have n training examples 
and our model has dimension d?

! Answer: it’s O(nd)

! Compare to SVRG which required O(3d)



Many other variance reduction methods

! SAG
! SAGA
! SVRG
! SDCA – stochastic dual coordinate ascent
! Etc.



Questions?

! Upcoming things
! Paper Presentation #4 on Wednesday— read paper before class
! Paper Review #3 due Today.


