Online vs. Oftline Learning,
Variance Reduction, and SVRG

CS6787 Lecture 5 — Fall 2017



Recall from Lecture 2

I Gradient descent
I Computationally slow to run

! Statistically converges at a linear rate

E 1x," x*12 =0y}

I Stochastic gradient descent (SGD)
I Computationally fast iterations, N0 dependence on dataset size
| Statistically converges at a slower rate- or to a noise ball

E |||z —2*[*] = 0(1/1)



Can We Do Better?

| Ts there an algorithm that has the computational structure of SGD
but still gets the fast linear rates of gradient desceht

I Intermediate question: can we find problems for which vanilla SGD
already converges at a linear rate, rather than converging to a noise ball?

I If we find such a problem, we can understand why it happens



Matrix Completion

| Suppose you have some rank-1 matrix A = xx '

| Carelessly, you lost most of the entriesf A

I You only have access to a sparse, randomly-chosen subset of the entries

I Goal: recover the original matrixA from the sparse samples.

I Applications include recommender systems, principle component analysis, etc.



Matrix Completion as Optimization

I Simplest thing: minimize squared error between model and samples.
minimize, (e'xx"g ! e Ag)?
(i,) )! samples

| Ts this convex?

| We can try to solve this with SGD: randomly choose (I, ]) and run

Xie1 = Xe ! 20 (6f xx"g ! g Aej)(ee' x + g€ X)



Aside: What is the cost of SGD here?

I Update rule is
Xie1 = Xe ! 20 (6f xx"g ! g Aej)(ee x + g€ x)

| Suppose we have K samples and X ! R".
| What is the time complexity of computing an iteration of SGD?

| 1t’s really fast: O(1) — this makes SGD very attractive here



Demo



A Linear Rate tor SGD? Why?

| Variance of the gradient estimator gOes to zero over time

I What is the variance at a particular point X?

) 1" . 1 2 dD 1" T T T T T :: 2
E "Ff(x)" = (e xxTe " e Aej)(egl x + g € x)
(i,j )! samples

$

L Y N

(e' xx"g " e Agj)*((g x)*+ (& x)?)
(i,j )! samples

| At an optimal point, XXT = A, the variance is zerb



The Role of Variance

I Hypothesis: if the variance becomes small when we get close to the
optimum, we converge at a linear rate.

I In fact, we can prove that we get a linear rate if for some C

Var | f(x) " C#x$ x'#

I Or more generally
n P 742

E 1 FX)" " C"E | f(x) " = C# f(x)#



Can we make this happen for any objectiver

I One way to do it:

L g(x)=! FX)"! f(x)
I In expectation, this is the same since

EN gx)]=! f(x)"! f(x')=1!f(x)" O
I And if the samples are Lipschitz continuous with parameter L,

IVa(@)|I° = IV f(z) = Vi(@)|° < L? |z —2*|



Does this mean we can always get a linear rater
I 'Yes!...for any problem for which we already know the solution.

| DoesnOt seem very useful

| What if we can approximate the solutior? For ! X'

g(x)= ! Fx)"! F{R)

I But now our gradients are biased— SGD converges to T not x*



Unbiased gradients with approximate solutions

I We can force the gradient to be unbiased by letting
Vi(x) = Vf(z) - VI(#) + B | V(@)

| Using a full gradient as an anchotto lower the variance

| But what is the computational costof doing this?

I Is it feasible to compute the full gradient in every setting?
I Is it worth it to get a linear rate?



Online and Oftline Learning



Two Types of Settings for M. Problems

I Online learning
| The training examples arrive one-at-a-time as we are learning
Il We don’t have access to all the training examples

I Not even necessarily a finite training set — new training examples may be
generated in real time in response to e.g. changes in the environment

I Offline learning

I We have access to all the training examples upfront
I The objective is a finite sum over the given training set



Online Learning

I Have some distribution of training examples and goal is to
minimize,, Ez~distribution |10Ss(w; T)]

| But we donOt actually have an expressifot the distribution

I All we can do is draw samples from it

L1, L2, L3,y ..



Advantages of Online Learning

| Online learning generally doesnCiverfit
I Why? The training distribution is the same as the test distribution.

I Online learning easily handles new datérom the environment

I Systems benefit: we don’t need to materialize the entire training set
y g
I Great for scaling upto problems that don’t fit in memory



Disadvantages of Online Learning

| CanOt compute exact/full objectives and gradients

Il Because we don’t even know distribution

| Difficult to evaluate convergence

| Generally donOt reuse training examplésultiple times

I So don’t make efficient use of the cache for the training set

| Neural networks sometimes catastrophically forget older examples.



Limitations on Online Learning

| 1-D least squares regression: for some distribution u over R,

o 1
minimizey Ey é(x—u)2

I Optimal solution is just the mean regardless of what p is

z" = BEyny (U]



Limitations on Online Learning (continued)

| Suppose there were an online learning algorithm that converged at a
linear rate for this 1-D least squares problem. Using T samples:

*\27 4
E[(ft—fl? ) ] —O(’Y)
I But we know (from statistics) the lowest-variance estimator for the mean
of a distribution, given t samples, is just the Sample mean

t
1 1
U = 7 g us = Var (u) = zVar ()

1=1

I Contradiction. No online algorithm can be this good!



Limitations on Online Learning (continued)

I Conclusion: there’s N0 online learning algorithm that converges at a
linear ratefor general convex problems.

| This doesn’t mean that online SGD never converges at a linear rate

I We saw that the matrix completion example did

I But it does suggest that if we want to make SGD converge at a linear
rate, we need more information than what we have in the online
seftting.



Aside: Online Learning in Research

I Online learning is an active area of research

I Just from a search of the titles, there were 18 papersnentioning online
learning in this yeat’s ICML and 28 paperdn this yeat’s NIPS.

I And many more if we look at the abstracts.

| Particularly interesting to us because of the computational benefitsof
being able to run online.



Oftline Learning

I Offline or batch learningis the more traditional setting of minimizing a

finite sum of training losses
|

1Y
minimize,, = [(W; Xi, V)
| =

1

I Offline learning is often just defined as “not online learning”

I We have access to everything:
I 'The loss function |
I The training examples X
I The training labels y



Benetits of Oftline Learning

I Can compute exact/full objectives and gradients

I Consequence: it’s trivially possible to converge at a linear rate
I Just use gradient descent

I Can we leverage this to make an SGlike algorithm fast?



Stochastic Variance-Reduced
Gradient (SVRG)



Recall: Unbiased low-variance samples

| From a few slides ago, we were looking at using samples of the form
Vi(x) = Vf(z) - VI(#) + B | V(@)

| These samples have reduced variancevhen X is close to X'

I We asked when we could do this, and now we have an answer:
I Only in the offline setting

I Question: how do we use this In an algorithm?



How much did we reduce the variance?

| If the gradient samples are L-Lipschitz continuous
Var (Vj(z)) = Var (Vf(z) - Vi(#) + B |Vf(2)|)
— Var (v f(z) -V f(:?:))
<B|vi@ - vi@| |

< L?||x— 2|~




Is this enough for a linear rate for SGD?

I NO, variance at the optimum is reduced, but still not zero!
11 ne 2
Var (I g(x')) " L2#' $ o .

| Tdea: what if we used a sequence of X that approaches the optimum?

| Then the variance would go to zero over time

I Intuition: if the variance goes to zero at a linear rate, then SGD should also
converge at a linear rate.



Is this enough? (continued)

| If we have a sequence of X that converges to the optimum at a linear
rate, then we can use it to reduce the variance of SGD so that it
converges to the optimum at a linear rate.

| This also doesnOt seem useful

| Critical insight: use the iterates of SGas ¥

I So, if SGD converges at a linear rate, then SGD will converge at a linear rate

| Seems circular — but we can make it rigorous



How often to use full gradient samples?

| Can we use every iteration of SGD as an anchor polt  ?

| We could...but this would Just be gradient descent
Vi) = V(z) - Vi) + E V()]
=V f(x).

I Instead, use a full gradient sample every K iterations of SGD.
| Called an epoch



Stochastic Variance-Reduced Gradient (SVRG)

| Initialize X 1 arbitrarily
I Outer loop: fork =1to K
T < Tk—1,T
gk < Vf(Zg) =E {Vf(i’k)}
Xko! Xy
| Inner loop: fort=1to T

I Sample f, ; at random from training set losses

Xt ! X 1" b # e (R 1) " # Fior (Bk) + @i



Computational Cost of SVRG

I Each inner loop runs for T iterations
I Has a computational cost of O(T)

I If we have N examples, the outer loop gradient computation has a
computational cost of O(n)

I Over K total outer loop iterations, total time is O(Kn + KT)



Memory Burden ot SVRG

I In addition to the copy of the model that needs to be stored for vanilla
SGD, we also need to store
| An additional copy of the model vector for the anchor point ¥

I An additional vector to store its exact/full gradient

| If the model is of size d, we will need to store a total of 3d numbers

I Plus the training set, which is usually much larger

| Takeaway: NO significant memory cost to run SVRG



Linear Rates for SVRG



Very Simple Proof that SVRG Converges
| Strategy: run the inner loop of SVRG long enough that for some ¥y <1

E ([ =X [P xio| <1 xio = x|

| Show that a fixed T suffices for every epoch K

I This is enough to show convergence at a linear rate. Why?

| You'll see a tighter version of this proof in this weekOs paper



Analysis ot an Inner Iterate of SVRG

| Starting with the iterate:
Tt = Teo 1! V" Fee(@es 1) 1" Foe(Or) + Qg
| Let’s simplify it a little by abusing notation to drop the K subscripts

Xe = xp 1! D" (ke ) !t @)+ " f(B)



Analysis (continued)

I Expected distance to the optimum:

.f.’.

Plaa]= B e at x0T Fie ) 1 i)+ SCKE

E |||z - o

—#th'X#'Z'(th'X)E f_(Xt 1)' fi(B) + f(E)({Otl
" &

PUE B e 01 e (e e

= #X¢rq ! X#;' 20 (xer 2 b X)) f (X 1)+'2#éf(xt 1 )#

+ 1 2Var " (e ) ! FR(R) + " f(E)‘{Ot 1

| 'To proceed, need to bound the second order/variance term



Analysis (continued)
| Important property: for constant €, Var (X + ¢) = Var (X)

| We can use this to simplify the second order term:

Var ! fi(xg 1) "1 Fi@@)+ ! f(8)"X0 1
| L
= Var ! fi(xg 1) "1 f(8)"Xu 1

%

0/ &
7 fi(Xe 1) ! ﬁ(ﬁ)gg::x“ 1

# E

# L2y 1" B8 # 228k 1" X' $7+2L2%0" X F



Analysis (continued)

| Substituting this back, we get

E |||z - 2"

xt_l}"#xtul!'x!#zl 2l (xpr 1! X)TSF (Xpw 1) + 1 2#$F (Xpe 1)#
+ 12 2L 28x0 ) X HH2L2H0) X #

I Now we can reduce the first part using Strong convexity/Lipschitz

E |||z — 2”7

ver] < s = 2P = 20p ai-s = 2P + 0212 ey — 27

+a? (2L2 |lpoy — ¥ + 202 || — 2*)°)



Analysis (continued)

| We can now take the full expectation, given the anchor point

E Ix," x'12% # (1" 20p+312LY)E Ixpe," x'12% +212L21%" x'12
| Next, for simplicity, let 't = E !X¢ " x*! %
pr < (1 —2ap+3a’L?)py 1 +2a°L?po

| Suppose we want to contract by a factor of €. As long as € B.1> Py

] (A" 2"u+3"cLA)y  +2"%L%el )



Analysis (continued)

Il Now we have
el (A" 2"u+3"2%L4)l, 1 +2"%L%ely 4
(1" 2'pu+5"%L%e)! 1

| Setting the step size such that ! 4 =51 “L%e

U2
5L 2e

U2
5L2e

Ly 1" lg1# 117



Analysis (continued)

I Now, this was all contingent upon € p._;> Py

I How many iterationsdo we need to get there?
I Need t such that

' 2
u 11 1
exp | t —
P Bl 7e e
I Tt suffices to pick any
‘) 5L “e

2



Analysis ot Inner Loop Is Donel

, . 5L%e .
| We’ve shown that if we run for t ! >— Iterations,
L
; w1
E Ixc" x'1°"% # B x'1°

| In particular, this means that across outer loop iterations,

1 .
x' 1% # 6E 1%, " x'1°

E '+



Outer Loop Analysis

I Applying this recursively,

2 2

E 1% " X! #e Klg," x'|

| So, to get down to error e we need K iterations, where

"R.)O# Xl n2

k! log



Bringing it Together

| Total number of stochastic gradient iterations needed 1s

5L2e. "B # x' "3 R R
tk ! — log L = 0O log -
1 | |

| This Is a linear rate!



Demo



Issues with Variance Reduction

I Computational cost
I Overfitting
I Interaction with other techniques

I Choosing parameters
I Metaparameteroptimization



Other Methods for Variance
Reduction



SAG

I Stochastic average gradient

I At each step, randomly update a single example’s gradient estimate using
the current iterate, like SGD

| But, use the sum of all gradient estimateso perform an update



Systems Comparison: SAG vs SVRG

I SAG requires us to store a gradient sample for each training example

I What is the memory cost of doing this, if we have N training examples
and our model has dimension d?

I Answer: it’s O(nd)

I Compare to SVRG which required O(3d)



Many other variance reduction methods

| SAG
| SAGA
l SVRG

| SDCA — stochastic dual coordinate ascent
| Etc.



Questions?

I Upcoming things
I Paper Presentation #4 0N Wednesday— read paper before class
| Paper Review #3 due Today.



